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1 Author's Apologia

I regret having published an error plagued earlier version of this paper as a refutation
of special relativity. Once the errors were scrubbed out of it, there was no refutation
in it. I am sorry for the inconvenience and distraction it may have occasioned you.

You may wonder why I look for a refutation of special relativity. It is reason
enough that science requires ongoing vigilance for error in our beliefs. In the case of
special relativity in particular, the theory is unusual in having been crafted on the
basis of imagined rather than actual experiment. There was no empirical basis for
the theory.

While some believe it was inspired or based on the Michelson Morley experiment,
it was not. Einstein subsequently declared that he had heard of but was not fa-
miliar with the Michelson Morley experiment at the time. Special relativity denies
the meaningfulness of absolute rest and absolute velocity; it deals with comparison
of clocks and relatively moving frames of reference, while the Michelson Morley ex-
periment involves no clock and only one frame of reference, (unless an absolute rest
frame of reference is admitted.)

Further, Einstein's special relativity paper, though appealing because it is more
readable than most scienti�c papers, is fraught with logical fallacy, mathematical er-
ror, contradictory statements, assertions without basis, ambiguity and equivocation.
It is remarkable for so compromised a work to be considered a theory at all. Claims
of veri�cation are often attributable to equivocation, misinterpretation or favorable
bias in interpreting ambiguities of the theory. For example, the slowing of a clock is
presented as an appearance due to the relative movement of the clock and the ob-
server, not as a change intrinsic to the clock due to its velocity. Remember, absolute
velocity is denied.
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So biased has the physics community become in favor of Einstein's theory that
they accept some empirical refutations of special relativity as con�rmations of the
theory. For example, Willem de Sitter's astronomical proof of the constancy of light
speed, sometimes cited as a con�rmation, showed that the speed of light from a
binary star to earth is constant independent of the varying velocity of the star, i. e.
not in the frame of reference of the star; whereas special relativity claims light speed
to be constant relative to every reference frame.

Con�rmation bias is the enemy of science. To enlighten your understanding of
special relativity, try reading "On the Electrodynamics of Moving Bodies" while
holding in mind the thought that its author may have been a technobabbling nit
wit.

Michelson, de Sitter, Ives (cited as one to con�rm time dilation), and others did
not accept special relativity. Ludwig Silberstein, an early promoter of relativity,
ultimately rejected it. There are many respectable relativity skeptics today, it is
reprehensible to claim that it is beyond question.

I shall continue my quest.

2 Abstract

An essential claim of special relativity is that the Lorentz transformation equations
convert spacetime coordinates of an event relative to one inertial frame of reference
to the corresponding spacetime coordinates of the same event relative to a second
inertial frame of reference in uniform motion relative to the �rst. If this is so, it must
be possible to again transform from the second to a third frame of reference and
thence back to the �rst frame of reference producing there a match to the original
coordinates. A mathematical calculation that does not rely on any empirical data
tests this claim. The consistency of the Lorentz transformations is veri�ed in this
instance.

3 Summary

The Lorentz transformation requires that the x-axis of the �rst reference frame's
coordinate system be parallel to the relative velocity of the second. This will require
a rotation of coordinates between successive transformations.

We consider three inertial frames of reference, designated ONE, TWO and
THREE. Origins coincide at time t = 0, as required for the transformation.
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To reveal the relative velocities, we specify with respect to ONE the subsequent
space-time coordinates of each origin, with O1,2, (coordinates with respect to ONE
of the origin of TWO,) on the x-axis and O1,3 in the xy-plane of frame ONE. We
also specify space-time coordinates of an event, E1. We transform each to frame
TWO. Then we rotate coordinates about the z-axis of TWO to align its x-axis
with the relative velocity of THREE. We transform to THREE and rotate to
align THREE's x-axis with O1. Upon rotating coordinates to restore the original
orientation of ONE, the originally given space-time coordinates are regenerated.

4 Transformations and Rotations

4.1 Conventions for Units and Subscripts

We make the second our unit of time and the light-second our unit of distance. This
simpli�es computations by making c = 1

As we change from one frame of reference to another, the changes of coordinate
values can be disorienting. We shall use subscripts to keep our bearings; the �rst
subscript will designate the frame of reference, the second subscript denotes an ob-
ject, (e. g. vm,n is velocity of n with respect to m, and xn,k is the x-coordinate of k
in the coordinate system of frame n.) Coordinates that have been rotated will have
an r appended in the subscript, and regenerated coordinates will have an a or ar
appended to the subscript for the frame of reference.

4.2 Lorentz Transformation Equations

The Lorentz transformation equations for velocity in the direction of the x-axis with
corresponding axes parallel, simpli�ed using c = 1, are:

xn,k = γm,n(xm,k − vm,ntm,k) (1)

yn,k = ym,k (2)

zn,k = zm,k (3)

tn,k = γm,n(tm,k − vm,nxm,k) (4)

where

γm,n =
1√

1− v2m,n

(5)

3



4.3 Rotation Matrices

The matrix for rotating space-time coordinates about the z-axis, leaving time un-
changed has the form 

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (6)

with
sin θ =

y√
x2 + y2

(7)

cos θ =
x√

x2 + y2
(8)

where x and y are initial coordinates of the point to be aligned with the rotated
x-axis.

Matrix calculator utilities are available on the internet, e. g. matrixcalc.org.

5 Initial Conditions

We consider three inertial frames of reference, designatedONE, TWO andTHREE,
with origins coinciding at time t = 0.

At time t = 1, let the vector speci�cation ( x y z t ) of the origins with
respect to ONE be as follows:
The origin of ONE is,

O1,1 = ( 0 0 0 1 ) (9)

The origin of TWO is,
O1,2 =

(
1
2

0 0 1
)

(10)

The origin of THREE is,
O1,3 =

(
0 1

3
0 1

)
(11)

Transforming these origin coordinates from frame of reference ONE to TWO,
thence to THREE, and back to ONE, will be accomplished without discrepancy.
However, the corresponding transformation of an event E not coinciding with an
origin fails to regenerate the original coordinates with respect to ONE. Our example
uses the event with frame ONE coordinates,

E1 =
(
3 5 4 2

)
(12)
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6 Transforming Observations to Frame TWO

Now, let us use Lorentz transformations to �nd coordinates with respect to TWO.

6.1 Parameters of the Transformation

From the coordinates of the origin of TWO,

O1,2 =
(

1
2

0 0 1
)

(10)

we �nd the relative velocity

v1,2 =
x1,2
t1,2

=
1

2
(13)

Evaluating γ1,2 for v1,2 =
1
2
,

γ1,2 =
1√

1−
(
1
2

)2 =
2
√
3

3
(14)

6.2 Origin of ONE to Frame TWO

Transforming the origin of ONE from ONE, at time t = 1, to TWO,

O1,1 = ( 0 0 0 1 ) (9)

x2,1 =
2
√
3

3

(
0− 1

2
× 1

)
=
−
√
3

3
(15)

y2,1 = 0 (16)

z2,1 = 0 (17)

t2,1 =
2
√
3

3

(
1− 1

2
× 0

)
=

2
√
3

3
(18)

we �nd the origin of ONE in TWO

O2,1 =
(
−
√
3

3
0 0 2

√
3

3

)
(19)
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6.3 Origin of TWO to Frame TWO

Transforming the origin of TWO from ONE, at time t = 1, to TWO,

O1,2 =
(

1
2

0 0 1
)

(10)

x2,2 =
2
√
3

3

(
1

2
− 1

2
× 1

)
= 0 (20)

y2,2 = 0 (21)

z2,2 = 0 (22)

t2,2 =
2
√
3

3

(
1− 1

2
× 1

2

)
=

√
3

2
(23)

we �nd the origin of TWO in TWO

O2,2 =
(

0 0 0
√
3
2

)
(24)

6.4 Origin of THREE to Frame TWO

Transforming the origin of THREE from ONE, at time t = 1, to TWO,

O1,3 =
(
0 1

3
0 1

)
(11)

x2,3 =
2
√
3

3

(
0− 1

2
× 1

)
=
−
√
3

3
(25)

y2,3 =
1

3
(26)

z2,3 = 0 (27)

t2,3 =
2
√
3

3

(
1− 1

2
× 0

)
=

2
√
3

3
(28)

we �nd the origin of THREE in TWO

O2,3 =
(
−
√
3

3
1
3

0 2
√
3

3

)
(29)
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6.5 The Event to Frame TWO

Transforming the event from ONE to TWO,

E1 =
(
3 5 4 2

)
(12)

x2,E =
2
√
3

3

(
3− 1

2
× 2

)
=

4
√
3

3
(30)

y2,E = 5 (31)

z2,E = 4 (32)

t2,E =
2
√
3

3

(
2− 1

2
× 3

)
=

√
3

3
(33)

we �nd the event in frame TWO

E2 =
(

4
√
3

3
5 4

√
3
3

)
(34)

7 Transforming Observations to Frame THREE

7.1 Parameters of the Transformation

We �nd velocity from the coordinates of the origin of THREE,

O2,3 =
(
−
√
3

3
1
3

0 2
√
3

3

)
(29)√√√√(−√3

3

)2

+

(
1

3

)2

+ 02 =
2

3

v2,3 =
2
3

2
√
3

3

=

√
3

3
(35)

Evaluating γ2,3 for v2,3 =
√
3
3
,

γ2,3 =
1√

1−
(√

3
3

)2 =

√
6

2
(36)
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7.2 Aligning x-axis of TWO with the Relative Velocity of

THREE

The sine and cosine of the angle θ of the relative velocity v2,3 with the original x-axis
are found from coordinates of the origin of THREE

O2,3 =
(
−
√
3

3
1
3

0 2
√
3

3

)
(29)

sin θ =
y√

x2 + y2
=

1
3
2
3

=
1

2
(37)

cos θ =
x√

x2 + y2
=
−
√
3

3
2
3

=
−
√
3

2
(38)

These are used to form a rotation matrix M2,3 to align the x-axis of TWO with the
relative velocity of THREE

M2,3 =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 =


−
√
3

2
−1
2

0 0
1
2

−
√
3

2
0 0

0 0 1 0
0 0 0 1

 (39)

We e�ect rotation of frame TWO coordinates by applying M2,3 to each coordi-
nate vector.

7.3 Origin of ONE to Frame THREE

7.3.1 Rotating in TWO

Rotating coordinates of the origin of ONE from (19)

O2r,1 = O2,1M2,3 =
(
−
√
3

3
0 0 2

√
3

3

)
−
√
3

2
−1
2

0 0
1
2

−
√
3

2
0 0

0 0 1 0
0 0 0 1

 =
(

1
2

√
3
6

0 2
√
3

3

)
(40)
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7.3.2 Transforming the Origin of ONE from TWO to THREE

By transforming rotated coordinates of the origin of ONE to THREE...

x3,1 =

√
6

2

(
1

2
−
√
3

3
× 2
√
3

3

)
=
−
√
6

12
(41)

y3,1 =

√
3

6
(42)

z3,1 = 0 (43)

t3,1 =

√
6

2

(
2
√
3

3
−
√
3

3
× 1

2

)
=

3
√
2

4
(44)

we �nd the origin of ONE in THREE

O3,1 =
(
−
√
6

12

√
3
6

0 3
√
2

4

)
(45)

7.4 Origin of TWO to Frame THREE

7.4.1 Rotating in TWO

Rotating coordinates of the origin of TWO in TWO is trivial, from (24).

O2r,2 = O2,2 =
(

0 0 0
√
3
2

)
(24)

7.4.2 The Origin of TWO from TWO to THREE

Transforming rotated coordinates of the origin of TWO to frame THREE

x3,2 =

√
6

2

(
0−
√
3

3
×
√
3

2

)
=
−
√
6

4
(46)

y3,2 = 0 (47)

z3,2 = 0 (48)

t3,2 =

√
6

2

(√
3

2
−
√
3

2
× 0

)
=

3
√
2

4
(49)

we �nd the origin of ONE in THREE

O3,2 =
(
−
√
6

4
0 0 3

√
2

4

)
(50)
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7.5 Origin of THREE to Frame THREE

7.5.1 Rotating in TWO

Rotating coordinates of the origin of THREE from (29)

O2r,3 = O2,3M2,3 =
(
−
√
3

3
1
3

0 2
√
3

3

)
−
√
3

2
−1
2

0 0
1
2

−
√
3

2
0 0

0 0 1 0
0 0 0 1

 =
(

2
3

0 0 2
√
3

3

)
(51)

7.5.2 The Origin of THREE from TWO to THREE

Transforming rotated coordinates of the origin of THREE to THREE,

x3,3 =

√
6

2

(
2

3
−
√
3

3
× 2
√
3

3

)
= 0 (52)

y3,3 = 0 (53)

z3,3 = 0 (54)

t3,3 =

√
6

2

(
2
√
3

3
−
√
3

3
× 2

3

)
=

2
√
2

3
(55)

we �nd the origin of THREE in THREE.

O3,3 =
(

0 0 0 2
√
2

3

)
(56)

7.6 The Event to Frame THREE

7.6.1 Rotating in TWO

Rotating coordinates of the Event from (34)

E2r = E2M2,3 =
(

4
√
3

3
5 4

√
3
3

)
−
√
3

2
−1
2

0 0
1
2

−
√
3

2
0 0

0 0 1 0
0 0 0 1

 =
(

1
2
−19
√
3

6
4

√
3
3

)
(57)
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7.6.2 The Event from TWO to THREE

Transforming rotated coordinates of the Event to THREE,

x3,E =

√
6

2

(
1

2
−
√
3

3
×
√
3

3

)
=

√
6

12
(58)

y3,E =
−19
√
3

6
(59)

z3,E = 4 (60)

t3,E =

√
6

2

(√
3

3
−
√
3

3
× 1

2

)
=

√
2

4
(61)

we �nd the coordinates of the Event in THREE.

E3 =
( √

6
12

−19
√
3

6
4

√
2
4

)
(62)

8 Transforming Observations to Frame ONE

8.1 Parameters of the Transformation

We �nd velocity from the coordinates of the origin of ONE in THREE,

O3,1 =
(
−
√
6

12

√
3
6

0 3
√
2

4

)
(45)√√√√(−√6

12

)2

+

(√
3

6

)2

=

√
2

4

v3,1 =

√
2
4

3
√
2

4

=
1

3
(63)

Which is also apparent from the Coordinates of THREE in ONE,
(
0, 1

3
, 0, 1

)
.

Evaluating γ3,1 for v3,1 =
1
3
,

γ3,1 =
1√

1−
(
1
3

)2 =
3
√
2

4
(64)
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8.2 Aligning x-axis of THREE with the Relative Velocity of

ONE

The sine and cosine of the angle θ of the relative velocity v3,1 with THREE's original
x-axis are

sin θ =
y√

x2 + y2
=

√
3
6√
2
4

=

√
6

3
(65)

cos θ =
x√

x2 + y2
=
−
√
6

12√
2
4

=
−
√
3

3
(66)

These are used to form a rotation matrix to align the x-axis with the relative velocity.

M3,1 =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 =


−
√
3

3
−
√
6

3
0 0√

6
3

−
√
3

3
0 0

0 0 1 0
0 0 0 1

 (67)

We e�ect this rotation of frame TWO coordinates by applying M3,1 to each
coordinate vector.

8.3 Origin of ONE to Frame ONE

8.3.1 Rotating in THREE

Rotating coordinates of the origin of ONE from (45)

O3r,1 = O3,1M3,1 =
(
−
√
6

12

√
3
6

0 3
√
2

4

)
−
√
3

3
−
√
6

3
0 0√

6
3

−
√
3

3
0 0

0 0 1 0
0 0 0 1

 =
( √

2
4

0 0 3
√
2

4

)
(68)

8.3.2 Transforming the Origin of ONE from Rotated THREE to ONE

Transforming rotated coordinates of ONE to frame ONE,

x1a,1 =
3
√
2

4

(√
2

4
− 1

3
× 3
√
2

4

)
= 0 (69)

y1a,1 = 0 (70)
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z1a,1 = 0 (71)

t1a,1 =
3
√
2

4

(
3
√
2

4
− 1

3
×
√
2

4

)
= 1 (72)

we �nd the coordinates of the origin of ONE in ONE

O1a,1 =
(
0 0 0 1

)
(73)

8.4 Origin of TWO to Frame ONE

8.4.1 Rotating in THREE

Rotating coordinates of the origin of TWO from (50)

O3r,2 = O3,2M3,1 =
(
−
√
6

4
0 0 3

√
2

4

)
−
√
3

3
−
√
6

3
0 0√

6
3

−
√
3

3
0 0

0 0 1 0
0 0 0 1

 =
( √

2
4

1
2

0 3
√
2

4

)
(74)

8.4.2 Transforming the Origin of TWO from Rotated THREE to ONE

Transforming rotated coordinates of TWO to frame ONE,

x1a,2 =
3
√
2

4

(√
2

4
− 1

3
× 3
√
2

4

)
= 0 (75)

y1a,2 =
1

2
(76)

z1a,2 = 0 (77)

t1a,2 =
3
√
2

4

(
3
√
2

4
− 1

3
×
√
2

4

)
= 1 (78)

we �nd the coordinates of the origin of TWO in ONE

O1a,2 =
(
0 1

2
0 1

)
(79)
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8.5 Origin of THREE to Frame ONE

8.5.1 Rotating in THREE

The rotation of the origin of THREE in THREE is trivial

O3r,3 = O3,3 =
(

0 0 0 2
√
2

3

)
(80)

8.5.2 Transforming the Origin of THREE to ONE

Transforming the origin of THREE to frame ONE,

x1a,3 =
3
√
2

4

(
0− 1

3
× 2
√
2

3

)
=
−1
3

(81)

y1a,3 = 0 (82)

z1a,3 = 0 (83)

t1a,3 =
3
√
2

4

(
2
√
2

3
− 1

3
× 0

)
= 1 (84)

we �nd the coordinates of the origin of THREE in ONE

O1a,3 =
( −1

3
0 0 1

)
(85)

8.6 The Event to Frame ONE

8.6.1 Rotating Coordinates of the Event in THREE

E3r = E3M3,1 =
( √

6
12

−19
√
3

6
4

√
2
4

)
−
√
3

3
−
√
6

3
0 0√

6
3

−
√
3

3
0 0

0 0 1 0
0 0 0 1

 =
(
−13
√
2

4
3 4

√
2
4

)
(86)

8.6.2 Transforming the Event from Rotated THREE to ONE

Transforming the event to frame ONE,

x1a,E =
3
√
2

4

(
−13
√
2

4
− 1

3
×
√
2

4

)
= −5 (87)
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y1a,E = 3 (88)

z1a,E = 4 (89)

t1a,E =
3
√
2

4

(√
2

4
− 1

3
× −13

√
2

4

)
= 2 (90)

we �nd the coordinates of the origin of TWO in ONE

E1a =
(
−5 3 4 2

)
(91)

9 The Rotation of the Regenerated Frame ONE to

the Original Orientation

Originally, the origin of TWO was on the x-axis of ONE. From the regenerated
coordinates of the origin of TWO with respect to ONE(

0 1
2

0 1
)

(79)

we �nd the rotation matrix.

M1,2 =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (92)

9.1 Regeneration of Original Coordinates

O1ar,1 = O1a,1M1,2 =
(
0 0 0 1

)
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =
(
0 0 0 1

)
(93)

The origin of ONE is successfully regenerated.

O1ar,2 = O1a,2M1,2 =
(
0 1

2
0 1

)
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =
(

1
2

0 0 1
)

(94)

The origin of TWO is successfully regenerated.
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O1ar,3 = O1a,3M1,2 =
( −1

3
0 0 1

)
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =
(
0 1

3
0 1

)
(95)

The origin of THREE is successfully regenerated.

O1ar,E = O1a,EM1,2 =
(
−5 3 4 2

)
0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =
(
3 5 4 2

)
(96)

Coordinates of the event are successfully regenerated.
It appears that the Lorentz transformations yield consistent results when applied

to three or more frames of refererence with non-parallel relative velocities.
Elsewhere, under the title "Introduction to FitzGerald Relativity," an alternative

theory is proposed.
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